
PulseBlasterESR-PRO-500-USB-
RM2™

(SP51)

Owner’s Manual

SpinCore Technologies, Inc.
http://www.spincore.com

PBESR-PRO-500-USB-RM2

Congratulations and thank you for choosing a design from SpinCore
Technologies, Inc.

We appreciate your business!

At SpinCore, we aim to fully support the needs of our customers. If you
are in need of assistance, please contact us and we will strive to

provide the necessary support.

© 2000-2023 SpinCore Technologies, Inc. All rights reserved.
SpinCore Technologies, Inc. reserves the right to make changes to the product(s) or information herein without notice.
PulseBlasterESR™, PulseBlaster™, SpinCore, and the SpinCore Technologies, Inc. logos are trademarks of SpinCore Technologies, Inc.
All other trademarks are the property of their respective owners.

SpinCore Technologies, Inc. makes every effort to verify the correct operation of the equipment. This equipment version is not intended
for use in a system in which the failure of a SpinCore device will threaten the safety of equipment or person(s).

http://www.spincore.com 2 2023/10/11

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Table of Contents

I. Introduction .. 5

Product Overview .. 5

Board Architecture .. 6
Block Diagram ... 6
Output Signals ... 6
Timing Characteristics ... 7
Instruction Set .. 7
External Triggering ... 7
Summary .. 7

Specifications ... 8
TTL Specifications ... 8
Pulse Parameters (using 500 MHz clock frequency) .. 8
Pulse Program Control Flow (Common) .. 8

II. Installation ... 9

Installing the PulseBlasterESR-PRO-500-USB-RM2 .. 9

III. Programming the PulseBlasterESR-PRO-500-USB-RM2 10

The PulseBlaster Interpreter .. 10

LabVIEW Extensions .. 11

C/C++ Programming ... 12

Using C Functions to Program the PulseBlasterESR-PRO-500-USB-RM2 14

IV. Connecting to the PulseBlasterESR-PRO-500-USB-RM2 17

Connector Information for 2U BNC Rackmount Enclosure ... 17
BNC Connectors .. 17
USB-B Data Connector .. 18
DB9 Connector (Trig/Res/Stat) .. 18
USB-C Power Connector ... 19

Status and Hardware Pins .. 19
Status Pins Description .. 19
Hardware Reset .. 20
Hardware Trigger .. 20

http://www.spincore.com 3 2023/10/11

http://www.spincore.com/

PBESR-PRO-500-USB-RM2
Clock Oscillator Header ... 21

Appendix I: Controlling the PulseBlasterESR-PRO-500-USB-RM2 with
SpinAPI .. 23

Instruction Set Architecture ... 23
Machine-Word Definition ... 23
Breakdown of 80-bit Instruction Word ... 23

Output Pattern and Control Word ... 24
Short Pulse Feature .. 24
Data Field and OpCode .. 26
Delay Count .. 27

About SpinAPI ... 27

Related Products and Accessories ... 28

Contact Information .. 30

Document Information .. 30

http://www.spincore.com 4 2023/10/11

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

I. Introduction

Product Overview
The PulseBlasterESR-PRO-500-USB-RM2™ is a high-speed, intelligent pulse/pattern/delay generator

designed for outputting precisely timed TTL patterns. The intelligence of the PulseBlasterESR-PRO-500-

USB-RM2 comes from an embedded microprogrammed controller core nicknamed the PulseBlaster™. The

controller is able to execute instructions that allow it to control program flow much like a general purpose

microcontroller. This model has a 500 MHz internal clock frequency and features a 2U rackmount enclosure

with a depth of 2 inches.

The PulseBlasterESR-PRO-500-USB-RM2’s microprogrammed controller core is different from the

general-purpose microcontroller in that it contains a set of highly optimized instructions developed specifically

for timing and control applications. A unique and distinguishing feature of the PulseBlasterESR-PRO-500-

USB-RM2 processor is that the execution time for instructions is user programmable. This feature makes the

PulseBlasterESR-PRO-500-USB-RM2 processor capable of executing complex timing patterns at greatly

varying update rates, ranging from nanoseconds to months, with a constant setting accuracy of just one clock

period.

http://www.spincore.com 5 2023/10/11

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Board Architecture

Block Diagram

Figure 1 presents the general architecture of the PulseBlasterESR-PRO-500-USB-RM2 system. The

major building blocks are the static random access memory (SRAM), the PulseBlaster core, the

integrated bus controller (IBC), the counter, and the output buffers. The entire logic design, including the

SRAM memory and output buffers, is contained on a single silicon chip, making it a System-on-a-Chip

design. User control to the system is provided through the IBC over the universal serial bus (USB).

Output Signals

The PulseBlasterESR-PRO-500-USB-RM2 allows for 21 digital output signal lines, which are all

routed to BNC connectors. The output signals are impedance matched to 50 ohm.

The 21 individually controlled digital output bits comply with the 3.3V TTL-levels’ standard, and are

capable of delivering 25 mA per bit/channel. Keep in mind that this is sufficient to provide a signal to a

132 ohm load, but if more current is necessary beyond this, the individual bits/channels can be driven in

parallel.

http://www.spincore.com 6 2023/10/11

Figure 1: PulseBlasterESR-PRO-500-USB-RM2 Board Architecture. The clock oscillator
signal is derived from an on-chip PLL circuit typically using a 50 MHz on-board reference
clock.

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Timing Characteristics

The PulseBlaster core's timing controller accepts an external (on-board) crystal oscillator of 50 MHz.

The input frequency is internally multiplied. The PulseBlasterESR-PRO-500-USB-RM2 is available with

500 MHz internal clock frequency. The innovative architecture of the timing controller allows the

processing of either simple timing instructions (with delays of up to 232 clock cycles or 8.59 s at 500 MHz),

or double-length timing instructions (up to 252 clock cycles long – over 100 days at 500 MHz!).

Regardless of the type of timing instruction, the timing resolution remains constant for any delay – just

one clock period (e.g., 2 ns at 500 MHz).

The PulseBlaster core-timing controller has a very short minimum instruction time – only six clock

periods. This translates to a 12 ns machine instruction time at 500 MHz. The PulseBlasterESR-PRO-

500-USB-RM2 is also capable of generating pulses on all outputs of lengths down to one clock cycle. For

more information on this feature, please see the Short Pulse Feature section in Appendix I.

Instruction Set

The PulseBlaster core features a set of instructions for creating highly flexible pulse program flow

control. The micro-programmed controller allows for programs to include branches, subroutines, and

loops at up to 8 nested levels – all this to assist the user in creating dense pulse programs that cycle

through repetitious events, especially useful in numerous multidimensional spectroscopy and imaging

applications.

External Triggering

The PulseBlasterESR-PRO-500-USB-RM2 can be triggered and/or reset externally via dedicated

hardware lines. These lines combine the convenience of triggering (e.g., in cardiac gating) with the safety

of the "stop/reset" line (firmware-dependent).

Summary

The PulseBlasterESR-PRO-500-USB-RM2 is a versatile, high-performance pulse/pattern TTL signal

generator operating at 500 MHz and capable of generating pulses ranging from 2 ns to 104 days per

instruction at intervals ranging from 12 ns to 8.59 s per instruction. It can accommodate pulse programs

with highly flexible control commands of up to 4096 instruction words. Its high-current output logic bits

are individually controlled with an unterminated output voltage of 3.3 V.

http://www.spincore.com 7 2023/10/11

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Specifications

TTL Specifications

 21 individually controlled digital output lines (LVTTL levels, 3.3 V logical “one” unterminated)
 24 BNC connectors for rackmount system, 21 of which are individually controlled output channels
 Variable pulses/delays for every TTL line
 25 mA output current per TTL line

Pulse Parameters (using 500 MHz clock frequency)

 2 ns shortest pulse
 12 ns shortest interval
 104 days longest pulse/interval (using the long delay instruction)
 2 ns pulse/interval resolution
 4096 instructions
 External triggering and reset – 3.3V LVTTL levels

Pulse Program Control Flow (Common)

 Loops, nested 8 levels deep
 20 bit loop counters (max. 1,048,576 repetitions)
 Subroutines, nested 8 levels deep
 Wait for trigger – 8 clock cycle latency (16 ns at 500 MHz), adjustable to 0.89 seconds in duration
 15 MHz max. re-triggering frequency

http://www.spincore.com 8 2023/10/11

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

II. Installation

Installing the PulseBlasterESR-PRO-500-USB-RM2

Whenever installing or uninstalling the PulseBlasterESR-PRO-500-USB-RM2, always have it

disconnected from the computer initially. Uninstall any previous version of SpinAPI.

 1. Install the latest version of SpinAPI found at: http://www.spincore.com/support/spinapi/ .

• SpinAPI is a custom Application Programming Interface developed by SpinCore Technologies,

Inc. for use with the PulseBlasterESR-PRO-500-USB-RM2 and most of SpinCore's other

products. It can be utilized using C/C++ or graphically using the options in the next section

below. The API will also install the necessary drivers.

 2. Shut down the computer, unplug the power cord.

 3. Connect the PulseBlasterESR-PRO-500-USB-RM2 to the computer.

 a) Plug the USB-B cable into the PulseBlasterESR-PRO-500-USB-RM2 and the other end into the

host computer.

 4. Power the PulseBlasterESR-PRO-500-USB-RM2 using the provided USB-C power adapter (part:

WR9QA3000USBC2MNA-CIMR6B)

 a) Note: The USB-C power supply must be capable of sourcing 5V/3A, otherwise the

PulseBlasterESR-PRO-500-USB-RM2 will not turn on.

 5. Plug the PC power cord back in, turn on the computer and follow the installation prompts.

 6. The simplest way to test whether the device has been installed properly and can be controlled as

intended is to run a simple test program. These example files can be found in the SpinAPI package.

 7. To open the SpinAPI package on a Windows 10 PC, simply click the Window Start icon, and scroll

down to find and open the "SpinCore" folder. Example .exe files and their C source code can be

found in the folder /SpinAPI/examples. From there, you may select the “PulseBlasterESR-PRO”

folder and run all .exe programs to test your PulseBlaster.

http://www.spincore.com 9 2023/10/11

http://www.spincore.com/
http://www.spincore.com/support/spinapi/
http://www.spincore.com/support/spinapi/
http://www.spincore.com/support/spinapi/instructions/#Windows_Installation_Instructions
http://www.spincore.com/support/spinapi/instructions/#Windows_Uninstallation_Instructions

PBESR-PRO-500-USB-RM2

III. Programming the PulseBlasterESR-PRO-
500-USB-RM2

SpinCore Technologies Inc. is dedicated to providing an easy and efficient method of programming your

board. Various control methods available are detailed below, making PulseBlaster products flexible for any

number of applications.

The PulseBlaster Interpreter
The PulseBlasterESR-PRO-500-USB-RM2 can be programmed using PulseBlaster Interpreter, which is a

free programming utility provided by SpinCore for writing pulse programs. This easy-to-use editor allows you

to create, edit, save, and run your pulse sequence. Figure 2, below, shows the PulseBlaster Interpreter being

used with an example program.

The PulseBlaster Interpreter is available as part of the SpinCore driver suite, and will be automatically

installed during the setup process (setup process is described in Section II. Installation). For convenience, a

shortcut to the PulseBlaster Interpreter will be added to your desktop. For more information on programming

using the PulseBlaster Interpreter, see the manual located at http://www.spincore.com/support/SPBI/Doc/.

http://www.spincore.com 10 2023/10/11

Figure 2: Graphical Interface of PulseBlaster Interpreter. The example shown creates
a pulse that toggles all TTL bits on for 100 ms, then off for 500 ms, and repeats.

http://www.spincore.com/
http://www.spincore.com/support/SPBI/Doc/

PBESR-PRO-500-USB-RM2

LabVIEW Extensions
The SpinCore PulseBlaster LabVIEW Extensions (PBLV) provide the ability to program and control the

functionality of PulseBlaster boards using the simple National Instruments (NI) LabVIEW graphical

programming interface. The package contains basic subVIs that can be used to include PulseBlaster

interaction from your own LabVIEW programs, as well as some complete example VIs. Additionally, all of the

examples are available as stand-alone applications to control.

There are two versions of the LabVIEW extensions available free of charge on our website. The first is

for those who do not have LabVIEW or who are not familiar with LabVIEW programming. This option is a

stand-alone GUI (see Figure 3 above) that comes in executable form and utilizes the LabVIEW runtime

environment. The second is for those who have LabVIEW and would like to make a custom interface for the

PulseBlasterESR-PRO-500-USB-RM2. For more information and downloads please visit:

http://www.spincore.com/support/PBLV/

http://www.spincore.com 11 2023/10/11

Figure 3: Example of PulseBlaster LabVIEW
Extensions User Interface.

http://www.spincore.com/
http://www.spincore.com/support/PBLV/

PBESR-PRO-500-USB-RM2

C/C++ Programming
The most dynamic and flexible way to program the PulseBlasterESR-PRO-500-USB-RM2 board is with

C/C++ using the SpinAPI package. The GUI based approaches to programming the board are designed for

simplicity so they can be used by someone with no programming experience.

While GUI's are easier to use, coding in C/C++ allows you to better utilize the various features of the

board and, in some cases, it may be easier to copy and paste lines of code than to make 100 instructions on

a GUI. The instructions to compile on Windows can be found at

http://www.spincore.com/support/spinapi/Windows_Help.shtml. After configuring the compiler, changing one

of our example programs and recompiling the executable file for use with your PulseBlasterESR-PRO-500-

USB-RM2 board is as easy as clicking “Rebuild All” (see Figure 4 below).

http://www.spincore.com 12 2023/10/11

Figure 4: Compiling a C program to run the PulseBlasterESR-PRO-500-USB-RM2 board is easy!

http://www.spincore.com/
http://www.spincore.com/support/spinapi/Windows_Help.shtml

PBESR-PRO-500-USB-RM2
Making changes to an example program requires understanding of only a few lines of code. The

following C code example generates a 50% duty cycle square wave with a 400.0 ms period.

A breakdown of the previous C code segment is as follows:

• Line 1: Initialize communication with the selected board. This must be called before any other

functions that communicate with the board.

• Line 2: Set the internal block clock frequency (in MHz). This must be called to insure proper timings

in the pulse program.

• Lines 7-10: Programs the board's pulse program memory.

◦ Line 7: pb_start_programming (PULSE_PROGRAM) must be called before using the

pb_inst(..) function.

◦ Line 8, instruction 1: Turn on bit 0 for 200.0 ms then continue to the next instruction. The

address of this instruction is stored in the “start” variable.

▪ Note: If the output is high for more than 5 clock cycles, it is necessary to turn off the Short

Pulse feature by settings bits 21-23 of the flag bits to “111.” This can be easily accomplished

by using the C-macro “ON” defined in “spinapi.h.”

◦ Line 9, instruction 2: All bits off for 200.0 ms, then branch to “start.”

◦ Line 10: pb_stop_programming() must be called before calling any other SpinAPI functions.

• Line 12: Start the board executing the Pulse Program.

• Line 13: Close communication with the board (Pulse Program execution will continue).

http://www.spincore.com 13 2023/10/11

1: pb_init(); /*Initialize communication with the board*/
2: pb_core_clock (CLOCK); /*Set the internal clock frequency value – this
3: will be either 250, 300, 400, or 500 MHz
4: depending on your product */
5:
6: /*Start programming the Pulse Program*/
7: pb_start_programming (PULSE_PROGRAM);
8: start=pb_inst(ON|0x01, CONTINUE, 0, 200.0*ms); /*Bit 0 on, 200ms*/
9: pb_inst(0x00, BRANCH, start, 200.0*ms);/*All bits off, 200ms*/
10: pb_stop_programming();
11:
12: pb_start(); /*Start the board executing*/
13: pb_close(); /*Close the communication with the board*/

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Using C Functions to Program the PulseBlasterESR-PRO-500-
USB-RM2

A series of functions have been written to control the board and facilitate the construction of pulse

program instructions. It should be noted that the pb_inst C function accepts any delay value greater than 10

ns. Values which are not integer multiples of the clock will be rounded to the closest integer multiple.

In order to use these functions, the DLL (spinapi.dll), the library file (libspinapi.a for MinGW, spinapilibgcc

for Borland, and spinapi.lib for MSVC), and the header file (spinapi.h), must be in the working directory of your

C compiler1.

int pb_init();

Initializes the PulseBlasterESR-PRO-500-USB-RM2 board. Needs to be called before calling any

functions using the device. It returns a 0 on success or a negative number on an error.

int pb_close();

Releases the PulseBlasterESR-PRO-500-USB-RM2 board. Needs to be called as last command in

pulse program. It returns a 0 on success or a negative number on an error.

void pb_core_clock(double clock_freq);

Used to set the clock frequency of the board. The variable clock_frequency is specified in MHz

when no units are entered. Valid units are MHz, kHz, and Hz.

int pb_start_programming(int device);

Used to initialize the system to receive programming information. It accepts a parameter referencing

the target for the instructions. The only valid value for device is PULSE_PROGRAM. It returns a 0

on success or a negative number on an error.

1 These functions and library files have been generated and tested with MinGW (https://www.mingw-w64.org/), Borland 5.5 (www.borland.com), MS
Visual Studio 2003 (https://visualstudio.microsoft.com/) compilers.

http://www.spincore.com 14 2023/10/11

http://www.spincore.com/
https://visualstudio.microsoft.com/
https://www.mingw-w64.org/

PBESR-PRO-500-USB-RM2
int pb_inst(int flags, int inst, int inst_data, double length);

Used to send one instruction of the pulse program. Should only be called after

pb_start_programming(PULSE_PROGRAM) has been called. It returns a negative number on an

error, or the instruction number upon success. If the function returns –99, an invalid parameter was

passed to the function. Instructions are numbered starting at 0.

int flags – determines state of each TTL output bit. Valid values are 0x000000 to 0xFFFFFF. For

example, 0x000010 would correspond to bit 4 being on, and all other bits being off.

int inst – determines which type of instruction is to be executed. Please see Table 5 for details.

int inst_data – data to be used with the previous inst field. Please see Table 5 for details.

double length – duration of this pulse program instruction, specified in nanoseconds (ns),

microseconds (us) or milliseconds (ms).

The largest value for the delay field of the pb_inst is 8589 ms (using a 500 MHz clock).

For longer delays, use the LONG_DELAY instruction (see Table 5). The maximum value for

the data field of the LONG_DELAY is 1048576. Even longer delays can be achieved using

the LONG_DELAY instruction inside of a loop.

int pb_stop_programming();

Used to tell that programming the board is complete. Board execution cannot start until this

command is received. It returns a 0 on success or a negative number on an error.

int pb_start();

Once board has been programmed, this instruction will start execution of pulse program. It returns a

0 on success or a negative number on an error.

int pb_stop();

Stop the Pulse Program execution. TTL outputs will either remain in their last state or return to zero,

depending on the firmware version of the board. It returns a 0 on success or a negative number on

an error.

http://www.spincore.com 15 2023/10/11

http://www.spincore.com/

PBESR-PRO-500-USB-RM2
There are currently six example C programs available with the SpinAPI package in the PulseBlasterESR-

PRO directory.

Example Use of C Functions

http://www.spincore.com 16 2023/10/11

#include <stdio.h>
#include <stdlib.h>

#define PBESRPRO
#include "spinapi.h"

#define CLOCK 400.0 // PulseBlaster core clock rate

int main (int argc, char **argv)
{
 int start;

 printf ("Copyright (c) 2010 SpinCore Technologies, Inc.\n\n");
 printf("Using SpinAPI library version %s\n", pb_get_version());

 if (pb_init () != 0) {
 printf ("Error initializing board: %s\n", pb_get_error());
 system("pause");
 }

 // Tell driver what clock frequency the board uses
 pb_core_clock(CLOCK);

 // Prepare the board to receive pulse program instructions
 pb_start_programming(PULSE_PROGRAM);

 // Instruction 0 - Continue to instruction 1 in 20ns. The lower 4 bits
 // (all BNC connectors) will be driving high. For PBESR-PRO boards,
 // or-ing THREE_PERIOD with the flags causes a 3 period short
 // pulse to be used.
 start = pb_inst(THREE_PERIOD | 0xF, CONTINUE, 0, 20.0 * ns);

 // Instruction 1 - Continue to instruction 2 in 40ns
 // The BNC1-3 will be driving high the entire 40ns.
 pb_inst(ON | 0xE, CONTINUE, 0, 40.0 * ns);

 // Instruction 2 - Branch to "start" (Instruction 0) in 40ns
 // Outputs are off
 pb_inst(0, BRANCH, start, 40.0 * ns);

 pb_stop_programming(); // Finished sending instructions

 pb_reset();
 pb_start(); // Trigger the pulse program

 // End communication with PulseBlasterESR-PRO-500-USB-RM2 board. The
 // pulse program will continue to run even after this is called.
 pb_close();

 return 0;
}

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

IV. Connecting to the PulseBlasterESR-PRO-
500-USB-RM2

The PulseBlasterESR-PRO functionality is available on SP51 USB rackmounts. The connectors for the

PulseBlasterESR-PRO-500-USB-RM2 are explained below in their respective sections.

Connector Information for 2U BNC Rackmount Enclosure
The SP51 PulseBlasterESR-PRO-500-USB-RM2 has BNC connectors, a USB-B data connector, a

Trig/Res/Stat DB9 (less known as DE9) connector, and a USB-C power connector. Please refer to the

sections below for detailed connector information.

BNC Connectors

The front panel of the rackmount provides 21 individually controlled output channels through BNC

connectors. The BNC connectors are arranged in a format which is 3 rows of 8 bits and are labeled above

the connector.

If using a high input impedance oscilloscope to monitor the PulseBlasterESR-PRO-500-USB-RM2's

output via the BNC connectors, place a resistor that matches the characteristic impedance of the

transmission line in parallel with the coaxial transmission line at the oscilloscope input (e.g., a 50 Ω

resistor with a 50 Ω transmission line, see Figures 5, below, and 6, on the next page). When using an

oscilloscope with an adjustable bandwidth, set the bandwidth to as large as possible. Failure to do so

may yield inaccurate readouts on the oscilloscope.

http://www.spincore.com 17 2023/10/11

Figure 5: Left: BNC T-Adapter and Right: BNC 50 Ohm resistor.

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

USB-B Data Connector

The USB-B connector is for communication with the PC. A USB 2.0 port or a USB port compatible

with USB 2.0 is required for data transfer.

DB9 Connector (Trig/Res/Stat)

The Trig/Res/Stat DB9 connector information is shown in Figure 7, below and Table 1, on the next

page. The Hardware Trigger and Hardware Reset are both low-true, so each of these pins would need to

be shorted to ground to cause a trigger or reset, respectively. Please refer to the Status and Hardware

Pins section for additional information about each pins functionality.

http://www.spincore.com 18 2023/10/11

Figure 6: BNC T-Adapter on the oscilloscope with coaxial
transmission line connected on the left and BNC 50 Ohm resistor
connected on the right, to terminate the line.

Figure 7: Trig/Res/Stat Male/Female DB9 connector drawing. This pin
numbering is for both male and female DB9 connectors. When making a
custom cable, starting with the mating DB9 connector may be helpful in
recognizing where the pins are on the mating connector. This image is drawn
with a view looking at the front of the front panel.

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

USB-C Power Connector

The PulseBlasterESR-PRO-500-USB-RM2 is powered through the USB-C connector labeled

POWER. The power source must be capable of providing 5V/3A, otherwise the board does not turn on.

This connector does not have any data capabilities.

Status and Hardware Pins

Status Pins Description

Stopped – Driven high when the PulseBlasterESR-PRO-500-USB-RM2 has encountered a STOP

OpCode during program execution and has entered a stopped state.

Reset – Driven high when the PulseBlasterESR-PRO-500-USB-RM2 is in a RESET state.

Running – Driven high when the PulseBlasterESR-PRO-500-USB-RM2 is executing a program. The

pin is driven low when the PulseBlasterESR-PRO-500-USB-RM2 enters either a reset or idle state.

Waiting – Driven high when the PulseBlasterESR-PRO-500-USB-RM2 has encountered a WAIT

OpCode, and is waiting for the next trigger (either hardware or software) to resume operation. Note

that the Running bit will also be high during a WAIT state.

Note that it is also possible to read the status bits via software by using the pb_read_status() function.

Please see http://www.spincore.com/CD/spinapi/spinapi_reference/ for details.

http://www.spincore.com 19 2023/10/11

Table 1: Trig/Res/Stat Male/Female DB9 connector pin functions. The DB9
connector pin postions are located in Figure 7. When making a custom cable,
starting with the mating DB9 connector may be helpful in recognizing where the
pins are on the mating connector.

Pin Number Function

1 Hardware Trigger
2 Hardware Reset
3 WAITING
4 RUNNING
5 RESET
6 Ground
7 Ground
8 Ground
9 STOPPED

http://www.spincore.com/
http://www.spincore.com/CD/spinapi/spinapi_reference/

PBESR-PRO-500-USB-RM2
Hardware Reset

The PulseBlasterESR-PRO-500-USB-RM2 has a HW_Reset hardware reset pin. HW_Reset is

pulled to high voltage (3.3V) on the board and can be activated by a low voltage pulse (or shorting to

GND). When the signal is activated during the execution of a program, the controller resets itself back to

the beginning of the program. Program execution can be started from the beginning by either a software

start command (pb_start()) or by a hardware trigger.

NOTE: The PulseBlaster requires a 3.3V input signal for HW_Reset. Applying voltages to the

input pins that are greater than 3.3V or less than 0V will damage the PulseBlasterESR-PRO-500-

USB-RM2.

Hardware Trigger

The PulseBlasterESR-PRO-500-USB-RM2 has the HW_Trigger hardware trigger pin. HW_Trigger is

pulled to high voltage (3.3V) on the board and can be triggered by a low pulse (or shorting to GND).

When the falling edge is detected and the program is idle, code execution is triggered. If the program is

idle due to a WAIT instruction, the HW_Trigger will cause the program to continue to the next instruction.

If the program is idle due to a STOP instruction or a HW_Reset signal, the HW_Trigger will start execution

from the beginning of the program. If the STOP instruction was used, a HW_Reset or software reset

(pb_reset() or pb_stop()) needs to be applied prior to the HW_Trigger.

NOTE: The PulseBlaster requires a 3.3V input signal for HW_Trigger. Applying voltages to the

input pins that are greater than 3.3V or less than 0V will damage the PulseBlasterESR-PRO-500-

USB-RM2.

Figure 8, on the next page, shows an example of the HW_Trigger signal with a latency of 80 ns.

Please refer to Instruction Set Architecture in Appendix I for more details on programming the duration of

the WAIT latency. To trigger once, the trigger signal must begin at logical-high voltage (between 2V and

3.3V), then must be pulled low (to ground) and stay low for at least 10 ns before returning to logical-high

voltage. The PulseBlaster will continue to trigger or reset for as long as the HW_Trigger or HW_Reset

signals stay at ground. If using a long TTL cable, make sure it is terminated and a buffer is used. If

necessary, use an inverter or program the triggering device to match the high-low-high HW_Trigger

signal. The input impedance of the HW_Trigger pin is 10 kOhms.

http://www.spincore.com 20 2023/10/11

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Clock Oscillator Header
The PulseBlasterESR-PRO-500-USB-RM2 comes with a crystal oscillator mounted on the oscillator

socket to provide a timing signal for the board. If required, it is possible to remove the oscillator that

comes standard, and instead drive the PulseBlasterESR-PRO-500-USB-RM2 with an external clock

signal. The oscillator module can be removed from the board, and an external signal can be input

through the header pins. Do not attempt to drive a PulseBlaster board with an external clock while an

oscillator module is also connected. The standard clock oscillator’s orientation should be noted - if the

clock oscillator is reconnected, it must be inserted in the same orientation or board damage may occur.

The external clock signal must be a TTL square wave, i.e. a digital signal of no more than 3.3 V. This is

the absolute maximum allowable voltage, typically a voltage of 1.5-2 V is sufficient. Be aware that the

TTL signal must be a positive-only signal, any negative voltage will damage the programmable-logic chip.

http://www.spincore.com 21 2023/10/11

Figure 8: Demonstration of HW_Trigger high-low-high signal. The blue
shows the HW_Trigger signal, the pink shows one of the output flags.
 Caution: applying voltages to the input pins that are greater than
3.3V or less than 0V will damage the PulseBlasterESR-PRO-500-USB-
RM2.

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Please take caution to provide a controlled signal at the correct frequency. The PulseBlasterESR-

PRO-500-USB-RM2 requires a 50 MHz signal. A reliable option for this purpose is the Oven Controlled

Clock Oscillator available for purchase. This component will provide a precision low ripple signal for all

PulseBlaster boards, and ensure that appropriate signal voltages are applied to the board. Information on

this product can be found in the “Related Products and Accessories” section.

NOTE: The PulseBlasterESR-PRO-500-USB-RM2 requires a 3.3V TTL input signal. A signal that is

more than 3.3V or less than 0V will damage the device.

http://www.spincore.com 22 2023/10/11

Figure 9: Both the bare header socket and the installed clock module are shown above. Please note
the proper orientation of the 50 MHz clock.

Figure 10: Example clock signal. Note that a small degree of voltage
ripple is acceptable, so long as the voltage always remains above threshold
for logical-high signals and below for logical-low signals.

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Appendix I: Controlling the PulseBlasterESR-
PRO-500-USB-RM2 with SpinAPI

Instruction Set Architecture

Machine-Word Definition

The PulseBlasterESR-PRO-500-USB-RM2 pulse timing and control processor implements an 80-bit

wide Very Long Instruction Word (VLIW) architecture. The VLIW is partitioned into fields dedicated to

specific purposes, and every VLIW is viewed as a single instruction by the microcontroller. The maximum

number of instructions that can be loaded onto the PulseBlasterESR-PRO-500-USB-RM2 is 4096. The

execution time of instructions can be varied and is under (self) control by one of the fields of the

instruction word – the shortest being five clock cycles and the longest being 232 clock cycles.

Breakdown of 80-bit Instruction Word

All instructions have the same format and bit length, and all bit fields need to be filled. Table 2 shows

the fields and bit definitions of the 80-bit instruction word.

The 80-bit VLIW is broken up into 4 sections:

1. Output Pattern and Control Word: 24 bits.

2. Data Field: 20 bits.

3. OpCode: 4 bits.

4. Delay Count: 32 bits.

http://www.spincore.com 23 2023/10/11

Bit Definitions for the 80-bit Instruction Word (VLIW)

Output/Control Word Data Field OpCode Delay Count

24 bits 20 bits 4 bits 32 bits

Table 2: Partitioning of the 80-bit Instruction Word (VLIW).

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Output Pattern and Control Word

Table 3 shows the output pattern and control bit assignments of the 24-bit output/control word.

When the bit corresponding to an IDC output connector is one, the voltage will be high for the

duration of the instruction. If the bit is zero, the voltage will be low for the duration of the instruction.

Short Pulse Feature

The Short Pulse feature utilizes the upper three bits of the instruction flag output bits (bits 21 to 23) to

control the number of clock cycles output flags are enabled. This allows for short pulses down to a single

clock cycle during the instruction period. Note that all flags are synchronized to this instruction period. It

is possible to create pulses longer than this length by setting the output/control word “ON” or setting the

upper three bits to 0, so the Short Pulse feature does not limit the maximum length of pulses. The

following table provides information on using the Short Pulse feature.

http://www.spincore.com 24 2023/10/11

SpinAPI Define Bits 21-23 Clock Periods Pulse Length at 500 MHz (ns)
- 000 - No Short Pulse

ONE_PERIOD 001 1 2
TWO_PERIOD 010 2 4

THREE_PERIOD 011 3 6
FOUR_PERIOD 100 4 8
FIVE_PERIOD 101 5 10

ON 111 - No Short Pulse

Table 4: Short Pulse Feature Characteristics.

Bit # Function Bit # Function
23 Controls Pulse Length for BNC connectors 11 Output Connector labeled Flag0..11, Pin 12
22 Controls Pulse Length for BNC connectors 10 Output Connector labeled Flag0..11, Pin 11
21 Controls Pulse Length for BNC connectors 9 Output Connector labeled Flag0..11, Pin 10
20 Output Connector labeled Flag12..23, Pin 9 8 Output Connector labeled Flag0..11, Pin 9
19 Output Connector labeled Flag12..23, Pin 8 7 Output Connector labeled Flag0..11, Pin 8
18 Output Connector labeled Flag12..23, Pin 7 6 Output Connector labeled Flag0..11, Pin 7
17 Output Connector labeled Flag12..23, Pin 6 5 Output Connector labeled Flag0..11, Pin 6
16 Output Connector labeled Flag12..23, Pin 5 4 Output Connector labeled Flag0..11, Pin 5
15 Output Connector labeled Flag12..23, Pin 4 3 Output Connector labeled Flag0..11, Pin 4
14 Output Connector labeled Flag12..23, Pin 3 2 Output Connector labeled Flag0..11, Pin 3
13 Output Connector labeled Flag12..23, Pin 2 1 Output Connector labeled Flag0..11, Pin 2
12 Output Connector labeled Flag12..23, Pin 1 0 Output Connector labeled Flag0..11, Pin 1

Table 3: Output Pattern and Control Word Bits.

http://www.spincore.com/

PBESR-PRO-500-USB-RM2
When bits 23-21 are from “001” to “101,” the programmed flag values will be outputted for the

specified number of clock cycles. To disable the Short Pulse feature, bits 21 to 23 must be set to “111” or

“000.”

Figure 11 gives an example of the Short Pulse feature. The example uses a 3 period duration.

This example only shows 4 flags, but all flags will be affected.

NOTE: The Short Pulse functionality is firmware-dependent. Please inquire with SpinCore
Technologies for upgrades or details.

http://www.spincore.com 25 2023/10/11

Figure 11: Example of the Short Pulse Feature. This example uses a 3 period duration.
This example displays the output of 4 flags, but all flags are affected by the Short Pulse
feature. A 500.0 MHz product is used in this example.

Flag 0

Flag 1

Flag 2

Flag 3

Clock Cycle 1 Clock Cycle 2 Clock Cycle 3 Clock Cycle 4 Clock Cycle 5

Minimum Instruction Length (5 Clock Cycles)

Instruction: pb_inst (THREE_PERIOD | 0xD, CONTINUE, 0, 10.0 * ns);

2.0 ns 4.0 ns 6.0 ns 8.0 ns 10.0 ns

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Data Field and OpCode
Please refer to the following table for information on the available instructions and their associated

data field argument.

OpCode
#

Inst Inst_data Function

0 CONTINUE Ignored
Program execution continues to next

instruction. See note (1) following this table.

1 STOP Ignored

Stop execution of program. Aborts the
operation of the micro-controller with no

control of output states (all TTL values may
remain from previous instruction).

Recommended that prior to the STOP
OpCode a short interval (minimum six clock
cycles) be added to set the output states as

desired.

2 LOOP
Number of desired loops. This
value must be greater than or

equal to 1.

Specify beginning of a loop. Execution
continues to next instruction. Data used to

specify number of loops

3 END_LOOP Address of beginning of loop
Specify end of a loop. Execution returns to

beginning of loop and decrements loop
counter.

4 JSR
Address of first subroutine

instruction
Program execution jumps to beginning of a

subroutine.

5 RTS Ignored
Program execution returns to instruction after

JSR was called.

6 BRANCH Address of next instruction
Program execution continues at specified

instruction.

7 LONG_DELAY
Desired multiplier of the delay.

This value must be greater than
or equal to 2.

For long interval instructions. Data field
specifies a multiplier of the delay field.
Execution continues to next instruction.

8 WAIT Ignored

Program execution stops and waits for
software or hardware trigger. Execution

continues to next instruction after receipt of
trigger. The latency is equal to the delay
value entered in the WAIT instruction line
plus a fixed delay of 6 clock cycles. The

WAIT OpCode may not be used by
the first instruction in memory.

(1) For instructions longer than 8589 ms please use a LONG_DELAY instruction.

Table 5: OpCode and Data Field Description.

http://www.spincore.com 26 2023/10/11

http://www.spincore.com/

PBESR-PRO-500-USB-RM2

Delay Count
The value of the Delay Count field (a 32-bit value) determines how long the current instruction should

be executed. The allowed minimum value of this field is 0x00000002 and the allowed maximum is

0xFFFFFFFF. The timing controller has a fixed delay of three clock cycles and the value that one enters

into the Delay Count field should account for this inherent delay. (NOTE: the pb_inst() family of functions

in SpinAPI and the PulseBlaster Interpreter automatically account for this delay.)

About SpinAPI
SpinAPI is a control library which allows programs to be written that can communicate with the

PulseBlasterESR-PRO-500-USB-RM2 board. The most straightforward way to interface with this library is

with a C/C++ program, and the API definitions are described in this context. However, virtually all

programming languages and software environments (including software such as LabVIEW and MATLAB)

provide mechanisms for accessing the functionality of SpinAPI.

Please see the example programs for examples of how to use SpinAPI. If the programs have not

been installed, then information to installing and finding them can be found in the “Installing the

PulseBlasterESR-PRO-500-USB-RM2” section. Reference documents for the API are available online at:

http://www.spincore.com/CD/spinapi/spinapi_reference/

http://www.spincore.com/support/spinapi/

http://www.spincore.com 27 2023/10/11

http://www.spincore.com/
http://www.spincore.com/CD/spinapi/spinapi_reference/

PBESR-PRO-500-USB-RM2

Related Products and Accessories

1. Oven Controlled Clock Oscillator (sub-ppm stability) shown in Figure 12. For ordering information,

please visit http://spincore.com/products/OCXO/ or contact SpinCore at

http://www.spincore.com/contact.shtml.

2. SpinCore TTL Line Driver Figure 13 - A USB-powered device with four input channels and 8 output

lines. Each output line is equipped with current driving capabilities to insure TTL voltage level over 50

Ohm loads. The SpinCore TTL Line Driver is the perfect tool to accompany any TTL device.

Additional specifications, ordering information, and the manual for the TTL Line Driver are available at

http://www.spincore.com/products/SpinCoreTTLLineDriver/SpinCoreTTLLineDriver.shtml.

http://www.spincore.com 28 2023/10/11

Figure 13: TTL Line Driver assures TTL levels over 50 Ohm loads.

Figure 12: An Oven Controlled Clock Oscillator (or OCXO) with sub-ppm frequency stability is
available for the PulseBlasterESR-PRO-500-USB-RM2 upon request.

http://www.spincore.com/
http://www.spincore.com/products/SpinCoreTTLLineDriver/SpinCoreTTLLineDriver.shtml
http://www.spincore.com/contact.shtml
http://spincore.com/products/OCXO/

PBESR-PRO-500-USB-RM2
3. If you require a custom design, custom interface cables, or other custom features, please inquire with

SpinCore Technologies through our contact form, which is available at

http://www.spincore.com/contact.shtml.

http://www.spincore.com 29 2023/10/11

http://www.spincore.com/
http://www.spincore.com/contact.shtml

PBESR-PRO-500-USB-RM2

Contact Information

SpinCore Technologies, Inc.
4631 NW 53rd Avenue, SUITE 103
Gainesville, FL 32653
USA

Telephone (USA): 352-271-7383
Website: http://www.spincore.com
Web Contact Form: http://spincore.com/contact.shtml

Document Information

Revision history available at SpinCore.

http://www.spincore.com 30 2023/10/11

http://www.spincore.com/
http://spincore.com/contact.shtml
http://www.spincore.com/

	I. Introduction
	Product Overview
	Board Architecture
	Block Diagram
	Output Signals
	Timing Characteristics
	Instruction Set
	External Triggering
	Summary

	Specifications
	TTL Specifications
	Pulse Parameters (using 500 MHz clock frequency)
	Pulse Program Control Flow (Common)

	II. Installation
	Installing the PulseBlasterESR-PRO-500-USB-RM2

	III. Programming the PulseBlasterESR-PRO-500-USB-RM2
	The PulseBlaster Interpreter
	LabVIEW Extensions
	C/C++ Programming
	Using C Functions to Program the PulseBlasterESR-PRO-500-USB-RM2

	IV. Connecting to the PulseBlasterESR-PRO-500-USB-RM2
	Connector Information for 2U BNC Rackmount Enclosure
	BNC Connectors
	USB-B Data Connector
	DB9 Connector (Trig/Res/Stat)
	USB-C Power Connector

	Status and Hardware Pins
	Status Pins Description
	Hardware Reset
	Hardware Trigger

	Clock Oscillator Header

	Appendix I: Controlling the PulseBlasterESR-PRO-500-USB-RM2 with SpinAPI
	Instruction Set Architecture
	Machine-Word Definition
	Breakdown of 80-bit Instruction Word
	Output Pattern and Control Word
	Short Pulse Feature
	Data Field and OpCode
	Delay Count

	About SpinAPI

	Related Products and Accessories
	Contact Information
	Document Information

